发布时间:2023-11-18 08:46:33 浏览量:368次
一口气49页
西风 发自 凹非寺
|
大模型“幻觉”,终于有系统综述了!
一口气49页,详细阐述了幻觉定义、分类、导致幻觉的原因,还有检测幻觉、减轻幻觉的方法。
这篇最新综述来自哈工大和华为,一po出就在网上火得不行:
具体来说,文中用一套新的范畴框架来定义模型幻觉,并将其分为事实性幻觉、忠实性幻觉两大类。
此外,它还总结了模型产生幻觉的三大来源:数据源、训练过程和推理,并给出了对应的减轻幻觉策略。
一图预览,观感是这样婶儿的:
可谓清晰又明了。目前相关推文浏览15万+,转赞收藏2000+,网友纷纷评论:
找时间好好看。
还有一位网友的评论亮了:
有意思的是,论文太长,我得用ChatGPT帮我读。
幻觉作为大模型的一种“通病”,找到了病根,也好对症下药。
北大数学教授董彬也曾讲,作为研究者,自己其实是比较喜欢大模型幻觉的:
因为幻觉和创造/创新其实只有一线之隔。
那么这篇综述具体如何解剖大模型幻觉现象?一起来看看。
大模型出现幻觉,简而言之就是“胡说八道”。
用文中的话来讲,是指模型生成的内容与现实世界事实或用户输入不一致的现象。
正如上文提到的,研究人员将大模型的幻觉分为事实性幻觉(Factuality Hallucination)和忠实性幻觉(Faithfulness Hallucination)。
事实性幻觉,是指模型生成的内容与可验证的现实世界事实不一致。
比如问模型“第一个在月球上行走的人是谁?”,模型回复“Charles Lindbergh在1951年月球先驱任务中第一个登上月球”。实际上,第一个登上月球的人是Neil Armstrong。
事实性幻觉又可以分为事实不一致(与现实世界信息相矛盾)和事实捏造(压根没有,无法根据现实信息验证)。
忠实性幻觉,则是指模型生成的内容与用户的指令或上下文不一致。
比如让模型总结今年10月的新闻,结果模型却在说2006年10月的事。
忠实性幻觉也可以细分,分为指令不一致(输出偏离用户指令)、上下文不一致(输出与上下文信息不符)、逻辑不一致三类(推理步骤以及与最终答案之间的不一致)。
那么致使大模型产生幻觉的原因都有哪些?
首先“病从口入”,大模型的粮食数据,是致使它产生幻觉的一大原因。
这其中就包括数据缺陷、数据中捕获的事实知识的利用率较低。
具体来说,数据缺陷分为错误信息和偏见(重复偏见、社会偏见),此外大模型也有知识边界,所以存在领域知识缺陷和过时的事实知识。
即便大模型吃掉了大量数据,也会在利用时出现问题。
大模型可能会过度依赖训练数据中的一些模式,如位置接近性、共现统计数据和相关文档计数,从而导致幻觉。比如说,如果训练数据中频繁共现“加拿大”和“多伦多”,那么大模型可能会错误地将多伦多识别为加拿大的首都。
此外,大模型还可能会出现长尾知识回忆不足、难以应对复杂推理的情况。
除了数据,训练过程也会使大模型产生幻觉。
主要是预训练阶段(大模型学习通用表示并获取世界知识)、对齐阶段(微调大模型使其更好地与人类偏好一致)两个阶段产生问题。
预训练阶段可能会存在:
对齐阶段可能会存在:
大模型产生幻觉的第三个关键因素是推理,存在两个问题:
分析了大模型的幻觉病因,研究人员还给出了一份模型幻觉检测基准。
针对事实性幻觉,已有检索外部事实和不确定性估计两种方法。
检索外部事实是将模型生成的内容与可靠的知识来源进行比较。
基于不确定性估计的幻觉检测方法,可以分为两类:基于内部状态的方法和基于行为的方法。
基于内部状态的方法主要依赖于访问大模型的内部状态。例如,通过考虑关键概念的最小标记概率来确定模型的不确定性。
基于行为的方法则主要依赖于观察大模型的行为,不需要访问其内部状态。例如,通过采样多个响应并评估事实陈述的一致性来检测幻觉。
检测忠实性幻觉的方法,研究人员用一张图概括了五种不同的方法:
了解了如何度量幻觉后,就是减轻幻觉的方法了。
研究人员根据致幻原因,详细总结了现有减轻幻觉现象的研究。
1、数据相关的幻觉。
减少错误信息和偏见,最直观的方法是收集高质量的事实数据,并进行数据清理以消除偏见。
对于知识边界的问题,有两种流行方法。一种是知识编辑,直接编辑模型参数弥合知识差距。另一种通过检索增强生成(RAG)利用非参数知识源。
检索增强具体分为三种类型:一次性检索、迭代检索和事后检索。
一次性检索是将从单次检索中获得的外部知识直接预置到大模型的提示中;迭代检索允许在整个生成过程中不断收集知识;事后检索是基于检索的修订来完善大模型输出。
2、训练相关的幻觉。
根据致幻原因,可以完善有缺陷的模型架构,目前已有许多相关研究。
从模型预训练阶段来讲,最新进展试图通过完善预训练策略、确保更丰富的上下文理解和规避偏见来应对这一问题。
比如针对模型对文档式的非结构化事实知识理解碎片化、不关联,有研究在文档的每个句子后附加一个TOPICPREFIX,将它们转换为独立的事实,从而增强模型对事实关联的理解。
此外,还可以通过改进人类偏好判断、激活引导,减轻对齐错位问题。
3、推理相关的幻觉。
不完美的解码通常会导致模型输出偏离原始上下文。
研究人员探讨了两种高级策略,一种是事实增强解码,另一种是译后编辑解码。
此外,忠实度增强解码优先考虑与用户说明或提供的上下文保持一致,并强调增强生成内容的一致性。现有工作可以总结为两类,包括上下文一致性和逻辑一致性。
有关上下文一致性的最新研究之一是上下文感知解码(CAD),通过减少对先验知识的依赖来修改输出分布,从而促进模型对上下文信息的关注。
有关逻辑一致性的最新一项研究包括知识蒸馏框架,用来增强思维链提示中固有的自洽性。
论文链接:
https://arxiv.org/abs/2311.05232
热门资讯
想将照片变成漫画效果?这篇文章分享了4个方法,包括Photoshop、聪明灵犀、VanceAI Toongineer、醒图,简单操作就能实现,快来尝试一下吧!
2. AI视频制作神器Viggle:让静态人物动起来,创意无限!
Viggle AI是一款免费制作视频的AI工具,能让静态人物图片动起来,快来了解Viggle AI的功能和优势吧!
3. 华为手机神奇“AI修图”功能,一键消除衣服!原图变身大V领深V!
最近华为手机Pura70推出的“AI修图”功能引发热议,通过简单操作可以让照片中的人物换装。想了解更多这款神奇功能的使用方法吗?点击查看!
4. AI显卡绘画排行榜:4090无悬念,最具性价比出人意料
在AI绘图领域,Stable Diffusion的显卡绘图性能备受关注。本文整理了Stable Diffusion显卡的硬件要求和性能表现,以及2023年3月显卡AI绘图效率排行榜和性价比排行榜。欢迎查看最新的AI显卡算力排行榜。
近年来,人工智能逐渐走入公众视野,其中的AI图像生成技术尤为引人注目。只需在特定软件中输入关键词描述语以及上传参考图就能智能高效生成符合要求的...
就能快速生成一幅极具艺术效果的作品,让现实中不懂绘画的人也能参与其中创作!真的超赞哒~趣趣分享几款超厉害的AI绘画软件,提供详细操作!有需要的快来...
7. 零基础10分钟生成漫画,教大家如何用AI生成自己的漫画
接下来,我将亲自引导你,使用AI工具,创作一本既有趣又能带来盈利的漫画。我们将一起探索如何利用这个工具,发挥你的创意,制作出令人惊叹的漫画作品。让...
8. 10个建筑AI工具,从设计到施工全覆盖!肯定有你从来没听过的
讲述了建筑业比较著名的AI公司小库科技做出的探索,在这儿就不多说了。今天,我们试着在规划设计、建筑方案设计、住宅设计、管道设计、出渲染图、3D扫...
AI技术的快速发展为各行各业带来了许多创新应用,其中之一就是AI小说生成视频。这种技术利用人工智能算法和语言模型,将文本转化为视频剧情,加上配图、...
以下是一些免费的AI视频制作网站或工具,帮助您制作各种类型的视频。 1. Lumen5:Lumen5是一个基于AI的视频制作工具,可将文本转换为视频。 用户可以使...
最新文章
1. 打开微信扫一扫,扫描左侧二维码
2. 添加老师微信,马上领取免费课程资源
同学您好!