堪称全网最全、最系统的人工智能学习路线+视频教程,分享给你

发布时间:2024-06-27 16:54:41 浏览量:234次

现如今,中国人工智能领域人才仅有5万人,然而未来市场需求高达500万人,这是一个巨大的机遇,立即行动!

相比欧美,中国IT行业人才储备明显不足,但是人工智能领域的需求每年都在快速增长,尤其是未来几年人工智能人才的需求将会更加庞大。

如果你是一名程序员,现在就是学习人工智能的最佳时机!为什么这么说呢?

首先,作为程序员,持续学习新技术是保持竞争力的关键,只有跟随科技发展步伐,才能不被淘汰。

其次,人工智能、Python工程师目前是最吃香的职业之一,薪资待遇远高于其他技术岗位,而且中国缺口高达500万,每个程序员都有机会。

第三,掌握多项技能对程序员而言是最大的优势,而人工智能则是互联网未来的发展方向。

如何学习?别着急!资料已为您准备就绪。以下是简要目录:

第一部分 基础篇

第1章 初识机器学习

1.1 引言

1.2 基本术语

1.3 假设空间

1.4 归纳偏好

1.5 发展历程

1.6 应用现状

第2章 模型评估与选择

2.1 经验误差与过拟合

2.2 评估方法

2.2.1 留出法

2.2.2 交叉验证法

2.2.3 自助法

2.2.4 调参与最终模型

2.3 性能度量

2.3.1 错误率与精度

2.3.2 查准率、查全率与F1

2.3.3 ROC与AUC

2.3.4 代价敏感错误率与代价曲线

2.4 比较检验

2.4.1 假设检验

2.4.2 交叉验证t检验

2.4.3 McNemar检验

2.4.4 Friedman检验与后续检验

2.5 偏差与方差

第3章 线性模型

3.1 基本形式

3.2 线性回归

3.3 对数几率回归

3.4 线性判别分析

3.5 多分类学习

3.6 类别不平衡问题

第4章 决策树

4.1 基本流程

4.2 划分选择

4.2.1 信息增益

4.2.2 增益率

4.2.3 基尼指数

4.3 剪枝处理

4.3.1 预剪枝

4.3.2 后剪枝

4.4 连续与缺失值

4.4.1 连续值处理

4.4.2 缺失值处理

4.5 多变量决策树

第5章 神经网络

5.1 神经元模型

5.2 感知机与多层网络

5.3 误差逆传播算法

5.4 全局最小与局部极小

5.5 其他常见神经网络

5.5.1 RBF网络

5.5.2 ART网络

5.5.3 SOM网络

5.5.4 级联相关网络

5.5.5 Elman网络

5.5.6 Boltzmann机

第6章 支持向量机

6.1 间隔与支持向量

6.2 对偶问题

6.3 核函数

6.4 软间隔与正则化

6.5 支持向量回归

6.6 核方法

第7章 深度学习

7.1 卷积神经网络CNN基本原理

7.2 开源深度学习框架与常见卷积网络模型

7.3 循环神经网络RNN

7.4 生成模型与对抗生成网络

7.5 Keras基础(一)

7.6 Keras基础(二)

7.7 Keras基础(三)

7.8 Keras基础(四)

7.9 Keras基础(五)

7.10 Keras基础(六)

7.11 Keras(七) - 图像识别例子分析

7.12 Keras(八) - 时序模型例子分析

7.13 Keras(九) - 自然语言处理例子分析

7.14 Keras(十) - 对抗网络与生成模型例子分析

7.15 Tensorflow,TFSlim,Tensorlayer基础(一)

7.16 Tensorflow,TFSlim,Tensorlayer基础(二)

7.17 Tensorflow,TFSlim,Tensorlayer基础(三)

7.18 Tensorflow,TFSlim,Tensorlayer基础(四)

7.19 Tensorflow,TFSlim,Tensorlayer基础(五)

7.20 Tensorflow,TFSlim,Tensorlayer(六) - 图像识别例子分析

7.21 Tensorflow,TFSlim,Tensorlayer(六) - 时序模型例子分析

7.22 Tensorflow,TFSlim,Tensorlayer(六) - 自然语言处理例子分析

7.23 Tensorflow,TFSlim,Tensorlayer(六) - 图像分割例子分析

7.24 Tensorflow,TFSlim,Tensorlayer(六) - 对象检测例子分析

第8章 贝叶斯分类器

8.1 贝叶斯决策论

8.2 极大似然估计

8.3 朴素贝叶斯分类器

8.4 半朴素贝叶斯分类器

8.5 贝叶斯网

8.5.1 结构

8.5.2 学习

8.5.3 推断

8.6 EM算法

第9章 集成学习

9.1 个体与集成

9.2 Boosting

9.3 Bagging与随机森林

9.3.1 Bagging

9.3.2 随机森林

9.4 结合策略

9.4.1 平均法

9.4.2 投票法

9.4.3 学习法

9.5 多样性

9.5.1 误差--分歧分解

9.5.2 多样性度量

9.5.3 多样性增强

第10章 聚类

10.1 聚类任务

10.2 性能度量

10.3 距离计算

10.4 原型聚类

10.4.1 k均值算法

10.4.2 学习向量量化

10.4.3 高斯混合聚类

10.5 密度聚类

10.6 层次聚类

第11章 降维与度量学习

11.1 k近邻学习

11.2 低维嵌入

11.3 主成分分析

11.4 核化线性降维

11.5 流形学习

11.5.1 等度量映射

11.5.2 局部线性嵌入

11.6 度量学习

这里只介绍到这里,如需获取完整资料

想要免费获取学习资料?转发+关注并私信:“资料”即可!

分享这份学习资料也是对他人的一种帮助,感谢你的转发!

热门课程推荐

热门资讯

请绑定手机号

x
确定