一篇文章教会你AI绘画

发布时间:2023-12-07 20:27:15 浏览量:143次

一、前言

最近AI绘画让人工智能再次走进大众视野。在人工智能发展早起,一直认为人工智能能实现的功能非常有限。通常都是些死板的东西,像是下棋、问答之类的,不具有创造性。那时的人们应该想不到现在的AI已经能够绘画、谱曲、作诗了。这些曾被认为是人类独有的东西,如今也被AI涉猎了。今天我们要讨论的就是现今大火的AI绘画,我们来看看AI是不是真的有了创造力,还是只是不停的搬运。

可以实现AI绘画的模型有很多种,这里我们讨论Conditional GAN和Stable Diffusion两种模型。现在已经有了对应的商业版本,比如昆仑天宫的AI绘图就是采用了Stable Diffusion分支模型。


二、GAN

这里我们讨论Conditional GAN(Generative Adversarial Network)实现AI的原理。在讲Conditional GAN之前,我们来看看GAN是怎么回事。


2.1 生成

生成网络一直被认为是赋予AI创造力的突破口,生成包括文本生成、图像生成、音频生成等。

GAN是一种比较成熟的生成网络,通常用来生成图像。GAN有许多变种,包括DCGAN、CycleGAN等。


2.2 专家与赝品

GAN的中文名叫生成对抗网络,在提到GAN时经常会用两个对立的角色来举例。一个是造假专家,专门负责制作赝品;另一个是鉴别专家,专门负责鉴定赝品。他们最开始都不是专家,而是在对抗中学习,最终造假专家能够制造出人都难以识别出来的赝品。最终我们会抛弃鉴别专家,让造假专家为我们服务。

上面提到的造假专家就是G网络,也就是Generator;而鉴别专家就是D网络,也就是Discriminator。它们在互相对抗中学习,最终成为各自领域的专家,这就是GAN的思想。


2.3 Generator

下面我们以生成动漫头像的例子来讨论GAN网络的Generator和Discriminator。

首先讨论Generator,它在GAN中充当造假的作用,也是用它来生成图像。Generator接收一个随机变量,这个随机变量满足一种特定的简单分布,比如高斯分布。接收输入的随机变量后,网络经过运算生成一个非常长的向量,我们可以把这个向量reshape成w×h×3,也就是彩色图像。


Generator的具体结构可以是多种多样的,通常是以卷积为基础的网络。比如在DCGAN中,Generator由5层反卷积组成,其网络结构如下图:


输入一个维度为100的向量,输出一张64×64×3的图像,其PyTorch实现如下:

class Generator(nn.Module):
    def __init__(self, ngpu):
        super(Generator, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is Z, going into a convolution
            nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(ngf * 8),
            nn.ReLU(True),
            # state size. (ngf*8) x 4 x 4
            nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True),
            # state size. (ngf*4) x 8 x 8
            nn.ConvTranspose2d( ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),
            # state size. (ngf*2) x 16 x 16
            nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            # state size. (ngf) x 32 x 32
            nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
            nn.Tanh()
            # state size. (nc) x 64 x 64
        )

    def forward(self, input):
        return self.main(input)


2.4 Discriminator

Discriminator是GAN中非常重要的一个角色,它是一个接受一个图片输入的网络,输入的图像会包含一部分真实图像real(我们收集的动漫图像),还会包含一部分虚假图像fake(Generator生成的图像),然后输出一个结果。这个结果可以是fake是真实图像的概率,也可以是fake的类别(0表示假,1表示真)。对于Discriminator而言,它的目的就是调整网络参数,让网络知道fake图像是假的。


关于Discriminator的结构,并没有非常固定的约束,通常是一个卷积网络。这里同样参考DCGAN,这里实现PyTorch的一个实现:

class Discriminator(nn.Module):
    def __init__(self, ngpu):
        super(Discriminator, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is (nc) x 64 x 64
            nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf) x 32 x 32
            nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*2) x 16 x 16
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*4) x 8 x 8
            nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*8) x 4 x 4
            nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()
        )

    def forward(self, input):
        return self.main(input)

这里比较特别的就是LeakyReLU的使用。


2.5 GAN

有了Generator和Discriminator就可以组成GAN网络了。

最开始Generator和Discriminator是两个懵懂小孩,Generator不知道如何生成,Discriminator也不知道如何辨别。GAN网络的训练分为下面几个步骤。

· 第一步:训练Discriminator网络,此时Generator提供的照片都是噪声,先训练Discriminator可以让 Discriminator知道如何区分真实图像和噪声

· 第二步:固定Discriminator,训练Generator,让Generator生成的图像能够瞒过Discriminator

· 第三步:再循环训练Discriminator-Generator,直到Generator生成的图像能够满足我们的需求

· 第四步:用Generator生成图像

上述步骤可以看作下图:


以上就是GAN网络的训练过程。其实就是Generator和Discriminator交替训练的过程,其PyTorch实现如下:

# Create the generator
netG = Generator(ngpu).to(device)
if (device.type == 'cuda') and (ngpu > 1):
    netG = nn.DataParallel(netG, list(range(ngpu)))
netG.apply(weights_init)

# Create the Discriminator
netD = Discriminator(ngpu).to(device)

if (device.type == 'cuda') and (ngpu > 1):
    netD = nn.DataParallel(netD, list(range(ngpu)))
netD.apply(weights_init)

criterion = nn.BCELoss()

fixed_noise = torch.randn(64, nz, 1, 1, device=device)
real_label = 1.
fake_label = 0.
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))

# Training Loop

# Lists to keep track of progress
img_list = []
G_losses = []
D_losses = []
iters = 0

print("Starting Training Loop...")
# For each epoch
for epoch in range(num_epochs):
    # For each batch in the dataloader
    for i, data in enumerate(dataloader, 0):

        ############################
        # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
        ###########################
        ## Train with all-real batch
        netD.zero_grad()
        # Format batch
        real_cpu = data[0].to(device)
        b_size = real_cpu.size(0)
        label = torch.full((b_size,), real_label, dtype=torch.float, device=device)
        # Forward pass real batch through D
        output = netD(real_cpu).view(-1)
        # Calculate loss on all-real batch
        errD_real = criterion(output, label)
        # Calculate gradients for D in backward pass
        errD_real.backward()
        D_x = output.mean().item()

        ## Train with all-fake batch
        # Generate batch of latent vectors
        noise = torch.randn(b_size, nz, 1, 1, device=device)
        # Generate fake image batch with G
        fake = netG(noise)
        label.fill_(fake_label)
        # Classify all fake batch with D
        output = netD(fake.detach()).view(-1)
        # Calculate D's loss on the all-fake batch
        errD_fake = criterion(output, label)
        # Calculate the gradients for this batch, accumulated (summed) with previous gradients
        errD_fake.backward()
        D_G_z1 = output.mean().item()
        # Compute error of D as sum over the fake and the real batches
        errD = errD_real + errD_fake
        # Update D
        optimizerD.step()

        ############################
        # (2) Update G network: maximize log(D(G(z)))
        ###########################
        netG.zero_grad()
        label.fill_(real_label)  # fake labels are real for generator cost
        # Since we just updated D, perform another forward pass of all-fake batch through D
        output = netD(fake).view(-1)
        # Calculate G's loss based on this output
        errG = criterion(output, label)
        # Calculate gradients for G
        errG.backward()
        D_G_z2 = output.mean().item()
        # Update G
        optimizerG.step()

        # Output training stats
        if i % 50 == 0:
            print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
                  % (epoch, num_epochs, i, len(dataloader),
                     errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))

        # Save Losses for plotting later
        G_losses.append(errG.item())
        D_losses.append(errD.item())

        # Check how the generator is doing by saving G's output on fixed_noise
        if (iters % 500 == 0) or ((epoch == num_epochs-1) and (i == len(dataloader)-1)):
            with torch.no_grad():
                fake = netG(fixed_noise).detach().cpu()
            img_list.append(vutils.make_grid(fake, padding=2, normalize=True))

        iters += 1

经过一段时间的训练后,我们就可以生成一些动漫图像了。关于DCGAN的代码实现可以参考


https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html#
sphx-glr-beginner-dcgan-faces-tutorial-py。

三、Conditional GAN

通过上面的GAN网络,我们可以生成动漫图像。但是这个生成是不可控的,我们只知道它生成的是动漫图像,至于图像内容我们无法得知。我们无法根据描述来生成图像,这个是GAN网络的局限,因此提出一种变形叫Conditional GAN,这种GAN网络可以解决上面的问题。


3.1 Generator

Conditional GAN不同于GAN的地方在于其Generator和Discriminator接收参数的数量不同。Generator在接收随机变量的同时还接收一个“思想向量”,这个思想向量可以是对句子的一个编码。此时我们的Generator的结构变成了输入两个向量,输出一个图像的网络。


比如上图,我们将red eyes这个句子转化成向量交给Generator,然后让它生成红眼的动漫图像。通过修改x我们可以得到不同的图像,又因为z这个随机变量的存在,我们即使给同样的x也可以得到不同的图像。

为了能让网络学习到文字和描述之间的关系,我们需要准备好(文字描述-图像)这种组合的数据集。


3.2 Discriminator

Discriminator同样需要输入两个向量,分别是Generator生成的图像和输入到Generator的x,然后输出是否正确。

交给Generator的训练数据需要把(正确描述-正确图像)作为类别1,把(正确描述,不正确图像)、(正确描述,正确图像,但图像和描述不匹配)作为类别0。

如果不包含(正确描述,正确图像,但图像和描述不匹配)作为训练数据,我们的网络得不到很好的结果。

知道了Generator和Discriminator网络后,我们可以使用和GAN类似的方式进行训练,最后的Generator就是我们的AI画师了。我们给它文字描述,它给我们返回一张对应的图。


四、Stable Diffusion

Stable Diffusion和Conditional GAN有很多相似的地方,因为都可以用来解决Text-to-image的问题,因此模型都是接收一个文本以及影响图像的高斯噪声。只不过使用的网络结构有所区别,而且Stable Diffusion引入了Latent Diffusion,让训练更加顺利。

Latent Diffusion包括了三个部分,分别是自编码器、U-Net、Text-Encoder。

其中自编码器包括编码器和解码器两部分。编码器的输出会交给U-Net进行处理。而U-Net得输出则会交给解码器。

U-Net在接收编码器输入的同时,还接收一个句子的向量。这个句向量由Text-Encoder给出。下图是U-Net的结构。


因为U-Net是在低维空间上工作的,因此Latent Diffusion快速有效。Stable Diffusion的整体流程如下图:

五、体验

现在有许多现成的平台可以AI绘画,相比GAN,Stable Diffusion要更擅长绘画,这里可以用昆仑天宫的天工巧绘(SkyPaint)来进行一个简单的体验,该平台使用的就是Stable Diffusion分支模型。下面是几个测试的例子。

1. 戴帽子拿剑的猫

我原本的设想是得到近似穿长靴的猫一样的图像,下面几个结果有一些穿长靴的猫的韵味


2. 梵高星空

其中第一个效果图和原作场景有几分相似的地方,而其余几幅画则不太一样


3. 阿拉斯加千年不化的雪山 一架红色直升机正在起飞

这次的描述包含很多细节,红色直升机,起飞等。从下面的结果来看AI把握了这些细节,每张图都没有太多违和感,不过细看螺旋桨还是有一些不太满意的地方。


大家可以自己去尝试一下AI绘图的效果。


六、总结

从Conditional GAN的实现来AI绘画并不是简单的照搬,在训练Conditional GAN的时候,我们在做的时学习到图像的分布。对于一张64×64×3的8bit图,可以有12288^256种组合,而这么多组合里面只有极小一部分是我们需要的图像,而Generator网络就是把z从一个简单的分布(比如高斯分布),映射一个复杂的分布(图像的分布)。当学习到这个分布后,我们只需要从z的分布中采样一个点,就可以对应到一张图像。这就是我们Generator在做的事情。

热门课程推荐

热门资讯

请绑定手机号

x

微信扫码在线答疑

扫码领福利1V1在线答疑

点击咨询
添加老师微信,马上领取免费课程资源

1. 打开微信扫一扫,扫描左侧二维码

2. 添加老师微信,马上领取免费课程资源

同学您好!

您已成功报名0元试学活动,老师会在第一时间与您取得联系,请保持电话畅通!
确定